Monday, August 22, 2011

Developping for Qt 4.8 Embedded on Windows

"Yes we can!" [Obama '08]

I started developing with Qt for Embedded Linux 5 years ago (it was Qt 3.3.1 at the time) and I immediately fell in love with the "hands in the dirt" aspect of embedded programming! However, I have to confess that as much as I love embedded stuff, I'm still a Windows guy... (no judgements please). Actually, while in my case it's purely a matter of habits, many people are stuck with Windows as their mandatory development platform, e.g. due to company policies, Windows-only software/SCM...

So, one day while downloading Sourcery-G++, the popular gcc toolchain for ARM, I noticed that a Windows version was available as well. Out of curiosity I installed it, and just as I hoped what I got was a full-fledged ARM toolchain for Windows, with gcc, gdb, a sysroot, etc.

The first thing that then came to my mind was:

Will it blend^W be possible to cross-compile Qt 4.8?

Well, yes it certainly is possible, and it took surprisingly little effort to get there. This is mainly thanks to qmake which provides a lot of the support out-of-the-box.
And it gets even better: Using the upcoming Qt Creator 2.3.0 you can also cross-compile your applications and even debug them remotely, all within the IDE!

Want to give it a try too? Here's how:

1) What you'll need

2) What you won't need
  • Cygwin, MSYS, or any other linux shell/emulation layer. The standard command line can be used

3) Installing the tools

Follow the instructions to download and install both the host and target toolchains. The installers should make it only a couple of clicks. You may want to add the toolchains permanently in your PATH for convenience, but this is not necessary.

Optionally, install Jom and add it to your PATH.

4) Downloading the Qt source

In the directory where you installed Git for Windows, double-click on the file git-cmd.bat. This opens a command line environment with the git tools set up. Navigate to the place where you want the Qt source downloaded, e.g. C:\Dev\, then clone the Qt source repository from gitorious:
C:\Dev>git clone git:// qt-4.8-src

Once the download is done, let's switch to the 4.8 branch:
C:\Dev>cd qt-4.8-src
C:\Dev\qt-4.8-src>git checkout -b 4.8 origin/4.8

5) Build preparations

Before going ahead with the build itself, we need to patch qmake.exe and configure.exe to add a few missing things and fix a couple of bugs. The patches are pending upstream and may be merged in soon, so hopefully this step won't be necessary by the time Qt 4.8.0 is released:

For qmake.exe: merge request or patch1 and patch2
For configure.exe: merge request or patch1 and patch2

Typically, Qt source checkouts come with a prebuilt configure.exe, and qmake gets built during the configuration step. However, we do need qmake to build the patched configure.exe, so we're in a chicken-and-egg situation. Not a big problem though, we could run configure.exe once first to build the patched qmake.exe, then rebuild configure.exe, then re-run it for the actual build. But a simpler alternative is to use another qmake.exe to rebuild configure.exe if you already have a Qt installed on your machine (any version >= 4.6.0 is fine):

Open a Qt Command Prompt from the Windows Start menu, and navigate to the Qt 4.8 checkout, then do:
C:\Dev\qt-4.8-src>cd tools\configure
C:\Dev\qt-4.8-src\tools\configure>qmake && nmake

(replace nmake with mingw32-make if Qt was built for MinGW)

This will rebuild configure.exe and automatically replace the one in the top-level directory. Note that you can even use Qt Creator to rebuild configure.exe: just open C:\Dev\qt-4.8-src\tools\configure\, then click the "Build" button and that's it.

6) Setting up the target Makespec

We're now almost ready to run the configure.exe script, but we have one more thing to do before that.

An important aspect of configuring Qt is to select the proper Makespec that qmake will use. A Makespec is a file that specifies what toolchain to use, the target platform, the compiler and linker flags, the standard libraries to link, and so on. In the case of cross-compiling, we have to specify two Makespecs: one for the host platform (the platform we're building on, ie. Windows) and one for the target (the platform we're building for, ie. ARM/Linux).

Qt comes with many predefined Makespecs, found under the mkspecs/ directory. Now, Qt doesn't provide target Makespecs when cross-compiling on Windows, so we'll need to provide our own instead (note that we can't use the ones provided for cross-compiling on Linux, since those are made for compiling in a linux shell environment. They're still useful as a base to see what needs to be set though). So this is the Makespec I've written (also available here):

# qmake configuration for building with arm-none-linux-gnueabi-g++

CONFIG                 += no_import_libs no_generated_target_info
# modifications to g++.conf
QMAKE_CC                = arm-none-linux-gnueabi-gcc
QMAKE_CXX               = arm-none-linux-gnueabi-g++
QMAKE_LINK              = arm-none-linux-gnueabi-g++
QMAKE_LINK_SHLIB        = arm-none-linux-gnueabi-g++
QMAKE_LIB               = arm-none-linux-gnueabi-ar
QMAKE_AR                = arm-none-linux-gnueabi-ar cqs
QMAKE_OBJCOPY           = arm-none-linux-gnueabi-objcopy
QMAKE_STRIP             = arm-none-linux-gnueabi-strip
QMAKE_RUN_CC            = $(CC) -c $(CFLAGS) $(INCPATH) -o $obj $src
QMAKE_RUN_CC_IMP        = $(CC) -c $(CFLAGS) $(INCPATH) -o $@ $<
QMAKE_RUN_CXX           = $(CXX) -c $(CXXFLAGS) $(INCPATH) -o $obj $src
QMAKE_RUN_CXX_IMP       = $(CXX) -c $(CXXFLAGS) $(INCPATH) -o $@ $<
QMAKE_INCDIR            =
QMAKE_MOC               = $$[QT_INSTALL_BINS]\\moc.exe
QMAKE_UIC               = $$[QT_INSTALL_BINS]\\uic.exe
QMAKE_IDC               = $$[QT_INSTALL_BINS]\\idc.exe
QMAKE_COPY              = copy /y
QMAKE_COPY_DIR          = xcopy /s /q /y /i
QMAKE_MOVE              = move
QMAKE_DEL_FILE          = del
QMAKE_MKDIR             = mkdir
QMAKE_DEL_DIR           = rmdir
QMAKE_CHK_DIR_EXISTS    = if not exist
QMAKE_IDL               = midl
QMAKE_ZIP               = zip -r -9
CODESOURCERY_ARM_CFLAGS = -march=armv7-a -mtune=cortex-a8 -mthumb -mfpu=neon -mfloat-abi=softfp -Wa,-mimplicit-it=thumb
TARGET_SYSROOT          = /CodeSourcery-sysroot
TARGET_QTDIR            = /QtEmbedded-4.8.0-arm
#modifications to gcc-base.conf
QMAKE_LIBS             += -lrt -lpthread -ldl
!isEmpty(TARGET_QTDIR) {
    QMAKE_LFLAGS       += -Wl,--dynamic-linker=$${TARGET_SYSROOT}/lib/

As you can see, we use the MINGW makefile generator since it supports gcc commands lines (which is what Sourcery-G++ is based on). Most of the work then consists in specifying the executables and compiler/linker options.

For the compiler options I'm assuming we're building for an ARM Cortex-A8 CPU, as found on the BeagleBoard. Depending on your CPU type and architecture, the compiler options might differ.

Also, the TARGET_SYSROOT and TARGET_QTDIR variables only need to be set if your target OS wasn't build with Sourcery-G++, or if it uses a different version, and if the Qt libraries aren't going to be in a standard path. More details about that further down.

Save this to a file called qmake.conf in a subdirectory of mkspecs. This directory will be the name of your Makespec:

You also need a file called qplatformdefs.h, which we can copy directly from the Linux Makespec in qws/linux-arm-gnueabi-g++:
C:\Dev\qt-4.8-src\mkspecs\linux-arm-gnueabi-g++>copy ..\qws\linux-arm-gnueabi-g++\qplatformdefs.h

7) Configuring Qt

We're now ready to run configure.exe, which will create qmake, set up the build-time variables and build configuration, then create the Makefiles for the Qt libraries and examples.

Open a command prompt with the host toolchain set up (ie. MinGW or Visual Studio), then go to the Qt source directory. This is the minimal configure.exe command line we need to enter:

C:\Dev\qt-4.8-src>configure.exe -debug -embedded -arch arm -neon -platform win32-msvc2010 -xplatform linux-arm-gnueabi-g++

The options are as following:

-debug: we want a non-optimized build with debug symbols. You could use -release instead for a optimized build without debug symbols.
-embedded: means we want to build the embedded version of Qt, not the desktop version. This activates the use of QWS and other features specific to Qt Embedded.
-arch arm: we're building for an ARM CPU. This is used internally to select the proper implementations for low-level stuff.
-neon: We want to make use of the NEON co-processor SIMD instructions, which considerably improves painting performance. However note that NEON is only available for Cortex-A8 and later ARM CPUs.
-platform win32-msvc2010: this is the host Makespec, ie. the one we'll use to build qmake, moc, uic, and other tools running on the host. In this case we're using Visual Studio 2010, but you could replace it with win32-g++ if you want to use MinGW instead.
-xplatform linux-arm-gnueabi-g++: this is the target Makespec, ie. the one we'll use to build libraries, tools, and examples. This will use the CodeSourcery compiler and linker.

You can of course add more options to it, for example to disable building some modules (like Qt3Support, Phonon, or Webkit) or to even skip building the additional tools like Assistant, Designer, etc., since those are useless on the target platform. I usually also skip building the examples and demos, since those increase the build time considerably and I never use them.

This is my typical command line:
C:\Dev\qt-4.8-src>configure.exe -debug -embedded -arch arm -neon -platform win32-msvc2010 -xplatform linux-arm-gnueabi-g++ -fast -no-phonon -no-webkit -no-qt3support -nomake tools -nomake translations -nomake examples -nomake demos

Normally the program should complete without errors. If you did get some, make sure your host toolchain is properly set up (tools in PATH, INCLUDE and LIB set if you're using Visual Studio), and that the proper makespec and architecture are selected (you can see it in the summary printed out by configure.exe before the makefiles are generated).

8) Cross-compiling Qt

The final step is to build Qt, which is as simple as running your make tool in the top-level build folder (there should be a Makefile in there now).

Note however that if you used Visual Studio as the host toolchain, do NOT use nmake to build Qt, as the target makefiles are generated for MinGW instead.

I recommend just using Jom, no matter which host toolchain you used. Jom handles both mingw and msvc makefiles, with -j support for parallel builds, and it's much faster than mingw32-make.

3) Profit

So now is a good time to get a cofee and take a break! Depending on your machine and what modules you're building, this may take up to four hours for the build to complete. Also, Sourcery-G++ on Windows is substantially slower than the MSVC compiler or even MinGW, so don't be surprised if it seems slower than normal.

Once the build is done, you'll find the Qt libraries as .so files in the lib/ directory, and the examples and demos in their respective directories if you built those.

The libraries and executables can be copied directly onto your target board and run from there. If the toolchain matches the toolchain used for building your board image (release and machine versions), it will work out of the box. Otherwise you'll need to copy the sysroot from Sourcery-G++ as well on the board and make sure the app can find it. Note that you can use the sysroot from the linux installers instead of copying it from windows, which is a little easier to deploy. More details about sysroot handling with Sourcery-G++ here.

...and that's it!

In the next post, I will show you how to cross-compile your own Qt applications as well, and how to use the new features in QtCreator 2.3 to cross-compile within the IDE, deploy the applications on the board, and even do remote debugging, all from your Windows desktop!

Tuesday, August 9, 2011

Oh boy, it's a boy!

The title says it all... I haven't made any "official" announcement on this blog yet, so here it is: we're having a baby! My sweet wife Sahar is 5 months pregnant, and during today's ultrasound we could now clearly see a little "knack" between the baby's legs :)

So it seems that the Pokrzywka line will keep going for a little longer :)
I love the position of the baby in that picture: the curve on the left is the baby's head, seen from the top, next to the "B" is the left arm, and on the top right is the butt and legs (which would be "coming out" of the picture).
We also got a couple of pics from showing a leg and an arm, but they're kinda hard to see:

We have another ultrasound on thursday, this time with more advanced machine and display, so check back for more picture of the little boy! :)